Immunology 6

Specificity 8
Specificity

- of immunoglobulin molecule on B cell – BCR
- of receptor on T cell – TCR

is defined and produced before their exposition to antigen

Number of specificities of BCR and TCR overpasses the number of genes on human chromosomes

Limited amount of genes can generate almost unlimited amount of specific BCR and TCR molecules
- monomer of immunoglobulin
- light and heavy chains
- light – λ,κ
- heavy – $\varepsilon,\mu,\delta,\gamma,\alpha$
- variable part – constant part
• structurally like immunoglobulin
• heterodimer consisting of $\alpha\beta$ or $\delta\gamma$ pair of chains.
• $\alpha\gamma$ - light
• $\delta\beta$ - heavy
• Variable and constant part
Genetic base of specificity

- Individual inherited set of genes from parents (maternal and paternal)
- in one individual there exist maternal or paternal forms of alleles on different molecules of receptors or Ig (allotypes)
Exclusion of alleles

- only kappa or lambda light chains from father of mother
- maternal or paternal heavy chain

- For genes encoding TCR αβ or γδ
 (α or γ pre light β or δ for heavy)
Exclusion of alleles

Each B cell and plasma cell has four light chain gene clusters. Only a single (chromosome) or (chromosome 22) gene cluster derived from the either the maternal (M) or paternal (P) chromosome pair is expressed.

Each B cell and plasma cell has both maternally and paternally derived heavy chain gene clusters (chromosome 14)

Gene cluster

Maternally derived κ chain cluster and maternally derived heavy chain cluster expressed.

Paternally derived λ chain cluster and paternally derived heavy chain cluster expressed.

Paternally derived κ chain cluster and paternally derived heavy chain cluster expressed.

Paternally derived λ chain cluster and maternally derived heavy chain cluster expressed.
Antigen specific receptors on lymphocytes

- Domains - **NH ends** of **variable parts** of heavy and light chains on **B lymphocytes** differs in different sequencies of aminoacids

- Domains - **C ends** – of **constant parts** have **limited variability** in the same isotype produced by different B or plasma cells
Genetic base of specificity

- **Sequence of aminoacids** is encoded by genes od DNA localised on *chromosomes* – *overload of genes* =>

- Aminoacids are encoded on several chromosomes: 2, 22, 14 for BCR
 14 and 7 for TCR

- In chromosomal locuses V, J, C – for light
 V, D, J, C – for heavy
Genetic base of specificity

- Genes are rearranged,
- transcribed to mRNA
- translated to the single light and single heavy chain polypeptide
Gene rearrangement, deletion, mutation

- Every individual is able to produce 10^{15} epitope-specific receptors

Rearrangement is responsible for enormous variability of epitope-specific part on variable domains of heavy and light chains $V_L V_H$ on BCR and TCR

- It arises by deletion of existing nucleotides genes in a segment of DNA on chromosome encoding this individual receptor molecule
Genotype of TCR – V(D)J chromosome 14 and 7

- **TCR:** V, D, J gens: - for $\alpha = 45V/L \times 55J$

 - for $\beta = 50V/L \times 2D \times 12J$

 $1200 \times 2475 = 3 \times 10^6$

 - for $\gamma = 5V/L \times 5J$

 - for $\delta = 2V/L \times 3D \times 4J$

 $24 \times 25 = 600$

+ constant part coding + 20 junction part
Genotype of BCR chromosomes

2 (κL), 22 (λL) a 14 (H)

Rearrangement of genes for Ig
- happens in early stages of B lymphocyte evolution
- leads to formation of variable parts, that can recognise majority of antigenic structures ever present

• 1 B cell = 1 isotype, 1 specificity (constant)

class switch
Genes encoding BCR

- Chromosome 2 – κ light – 40V x 5J x 1C = 200
- Chromosome 22 – λ light – 30V x 6J(C) = 80
- Chromosome 14 – heavy - 200V x 20D x 6J = 24000 = 9,1 x 10^6

• encoding of constant parts 9C (α1, α2, γ1, γ2, γ3, γ4, μ, δ, ε) 10^8
BCR
Rearrangement of genes for heavy chains - isotype
Class switch

- can happen suddenly or by exposition of the same type of antigens repeatedly to memory B cells
- Memory B cells – not every B cell that is exposed to the antigen change to plasma cell and start to produce Ig (IgM) at once. Some change to B memory cells and produce Ig after the next challenge (IgM, IgG)
Somatic hypermutation
Affinity maturation
APC